Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across U.S. forests
نویسندگان
چکیده
Biodiversity conveys numerous functional benefits to forested ecosystems, including community stability and resilience. In the context of managing forests for climate change mitigation/adaptation, maximizing and/or maintaining aboveground biomass will require understanding the interactions between tree biodiversity , site productivity, and the stocking of live trees. Species richness may not be the most appropriate tree biodiversity metric in this context as it weights all species as equally important. Measures that account for evolutionary relationships among species should be more biologically meaningful surrogates of functional diversity within forest communities, given that more phylogenetically distinct species should contribute more to the diversity of traits within a community. Using data from approximately 79,000 permanent and standardized forest inventory plots across the United States, we assessed trends in live aboveground tree biomass (LAGB) in relation to metrics of forest tree biodiversity at national and regional scales, controlling for site productivity and live tree stocking. These metrics included four measures of evolutionary diversity associated with distinct components of functional variation. In certain situations and locations across the U.S., evolutionary diversity metrics supply additional information about forest stands beyond that provided by simple species richness counts. This information can potentially include critical insight into tree functional attributes inherently related to evolutionary diversity. Relationships nationally between LAGB and most biodiversity metrics weakened with increasing site productivity and with increasing live tree stocking: The greater the site productivity and tree stocking, the less likely that higher biodiversity was associated with greater LAGB. This is consistent with the expectation that the coexistence of functionally different species increases forest productivity in less productive and more stressful environments, while dominant and highly productive species are able to competitively dominate in more productive habitats. Phylogenetic species clustering (PSC) was increasingly correlated with LAGB as live tree stocking increased on low-productivity sites, suggesting that the co-occurrence of tree species more widely distributed across the phylogenetic tree of life, and therefore likely possessing a wider variety of functional attributes, resulted in greater biomass accumulation on poorer sites. PSC and species richness appear to be the best biodiversity predictors for LAGB on the low-productivity sites likely to be most important for carbon/biomass management. These biodiversity metrics will be important for maximizing biomass/carbon for future carbon sequestration or bioenergy needs and should serve as indicators of forest function in forest resource assessments. The fundamental importance of biodiversity to forest management and forest health monitoring at a national …
منابع مشابه
Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests
Estimates of forest aboveground biomass are fundamental for carbon monitoring and accounting; delivering information at very high spatial resolution is especially valuable for local management, conservation and selective logging purposes. In tropical areas, hosting large biomass and biodiversity resources which are often threatened by unsustainable anthropogenic pressures, frequent forest resou...
متن کاملThe relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, southwestern China
The relationship between biodiversity and biomass is an essential element of the natural ecosystem functioning. Our research aims at assessing the effects of species richness on the aboveground biomass and the ecological driver of this relationship in a primary Pinus kesiya forest. We sampled 112 plots of the primary P. kesiya forests in Yunnan Province. The general linear model and the structu...
متن کاملManagement trade-off between aboveground carbon storage and understory plant species richness in temperate forests.
Because forest ecosystems have the capacity to store large quantities of carbon (C), there is interest in managing forests to mitigate elevated CO2 concentrations and associated effects on the global climate. However, some mitigation techniques may contrast with management strategies for other goals, such as maintaining and restoring biodiversity. Forest thinning reduces C storage in the overst...
متن کاملThe dangers of carbon-centric conservation for biodiversity: a case study in the Andes
Carbon-centric conservation strategies such as the United Nation’s program to Reduce CO2 Emissions from Deforestation and Degradation (REDD+), are expected to simultaneously reduce net global CO2 emissions and mitigate species extinctions in regions with high endemism and diversity, such as the Tropical Andes Biodiversity Hotspot. Using data from the northern Andes, we show, however, that carbo...
متن کاملClimate and Biodiversity Effects on Standing Biomass in Puerto Rican Forests
Carbon sequestration is a major ecosystem service provided by tropical forests. Especially in light of global climate change, understanding the drivers of forest productivity is of critical importance. Although abiotic conditions (e.g., precipitation) are known to influence forest productivity, ecological theory predicts that biodiversity may also have independent effects on productivity. We es...
متن کامل